Ekuivalen
Materi kedua yang akan dibahas kali ini adalah Ekuivalen.
Ekuivalen adalah dua atau lebih pernyataan majemuk yang memiliki nilai kebenaran yang sama.
Contoh ekuivalen:
~(p v q) ≡ ~p ʌ ~q
tabel kebenaran pernyataan ekuivalen ~(p v q) ≡ ~p ʌ ~q:
Hukum-hukum ekuivalen:
a. Hukum Komutatif
p ʌ q ≡ q ʌ p
p v q ≡ q v p
b. Hukum Distributif
p ʌ (q v r) ≡ (p ʌ q) v (p ʌ r)
p v (q ʌ r) ≡ (p v q) ʌ (p v r)
c. Hukum Asosiatif
(p ʌ q) ʌ r ≡ p ʌ (q ʌ r)
(p v q) v r ≡ p v (q v r)
d. Hukum Identitas
p ʌ T ≡ p
p v F ≡ p
e. Hukum Dominasi / Ikatan
f. Hukum Negasi
p v ~p ≡ T
p ʌ ~p ≡ F
g. Hukum Involusi / Negasi Ganda
~(~p) ≡ p
h. Hukum Idempoten
p ʌ p ≡ p
p v p ≡ p
i. Hukum De Morgan
~( p ʌ q ) ≡ ~p v ~q
~( p v q ) ≡ ~p ʌ ~q
j. Hukum Absorbsi / Penyerapan
p v (p ʌ q) ≡ p
p ʌ (p v q) ≡ p
k. Hukum True dan False
~T ≡ F
~F ≡ T
l. Hukum Perubahan Implikasi menjadi Disjungsi atau Konjungsi.
p => q ≡ ~p v q
Ekuivalen adalah dua atau lebih pernyataan majemuk yang memiliki nilai kebenaran yang sama.
Contoh ekuivalen:
~(p v q) ≡ ~p ʌ ~q
tabel kebenaran pernyataan ekuivalen ~(p v q) ≡ ~p ʌ ~q:
![]() |
Contoh tabel kebenaran ekuivalen |
Hukum-hukum ekuivalen:
a. Hukum Komutatif
p ʌ q ≡ q ʌ p
p v q ≡ q v p
b. Hukum Distributif
p ʌ (q v r) ≡ (p ʌ q) v (p ʌ r)
p v (q ʌ r) ≡ (p v q) ʌ (p v r)
c. Hukum Asosiatif
(p ʌ q) ʌ r ≡ p ʌ (q ʌ r)
(p v q) v r ≡ p v (q v r)
d. Hukum Identitas
p ʌ T ≡ p
p v F ≡ p
e. Hukum Dominasi / Ikatan
p v T ≡ T
p v F ≡ F f. Hukum Negasi
p v ~p ≡ T
p ʌ ~p ≡ F
g. Hukum Involusi / Negasi Ganda
~(~p) ≡ p
h. Hukum Idempoten
p ʌ p ≡ p
p v p ≡ p
i. Hukum De Morgan
~( p ʌ q ) ≡ ~p v ~q
~( p v q ) ≡ ~p ʌ ~q
j. Hukum Absorbsi / Penyerapan
p v (p ʌ q) ≡ p
p ʌ (p v q) ≡ p
k. Hukum True dan False
~T ≡ F
~F ≡ T
l. Hukum Perubahan Implikasi menjadi Disjungsi atau Konjungsi.
p => q ≡ ~p v q
Demikianlah pembahasan sederhana dari saya mengenai Ekuivalen. Semoga bermanfaat dan dapat dipahami dengan baik. Dan jangan lupa mencoba latihan soal-soal yang lain agar lebih mudah dimengerti. SEMANGAT!!
Sumber :
Komentar
Posting Komentar